Parallel and Distributed Computing with Coevolutionary Algorithms
نویسندگان
چکیده
The problem of parallel and distributed function optimization is considered. Two coevolutionary algorithms with different degrees of parallelism and different levels of a global coordination are used for this purpose and compared with sequential genetic algorithm (GA). The first coevolutionary algorithm called a loosely coupled genetic algorithm (LCGA) represents a competitive coevolutionary approach to problem solving and is compared with another coevolutionary algoritm called cooperative coevolutionary genetic algorithm (CCGA). The algorithms are applied for parallel and distributed optimization of a number of test functions known in the area of evolutionary computation. We show that both coevolutionary algorithms outperform a sequential GA. While both LCGA and CCGA algorithms offer high quality solutions, they may compete to outperform each other in some specific test optimizationproblems. The LCGA may be recommended to be used in optimization systems when high degree of parallelism is possible and non global coordination is expected while the CCGA algorithm is useful when low degree of parallelism and global coordination is acceptable.
منابع مشابه
Function Optimization with Coevolutionary Algorithms
The problem of parallel and distributed function optimization with coevolutionary algorithms is considered. Two coevolutionary algorithms are used for this purpose and compared with sequential genetic algorithm (GA). The first coevolutionary algorithm called a loosely coupled genetic algorithm (LCGA) represents a competitive coevolutionary approach to problem solving and is compared with anothe...
متن کاملStatic Task Allocation in Distributed Systems Using Parallel Genetic Algorithm
Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...
متن کاملImproving the palbimm scheduling algorithm for fault tolerance in cloud computing
Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...
متن کاملCloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کاملCoevolutionary Game-theoretic Multi-agent Systems: the Application to Mapping and Scheduling Problems
Multi-agent systems based on iterated, noncooperative N-person games with limited interaction are considered. Each player in the game has a payoo function and a set of actions. While each player acts to maximise his payoo, we are interested in the global behavior of the team of players, measured by the average payoo received by the team. To evolve a global behavior in the system, we propose two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002